Using Data Access Functions in Code

Iron Speed Designer creates two classes for each table in your database. These classes are called:
· <TableName>Record

· <TableName>Table, <ViewName>View, or <QueryName>Query
The Record classes represent a record from the database. Some of the record classes specify an actual physical record in the database while others correspond to a virtual record – the result of a join between tables. A “Record” suffix is added to the name of the database table to get the name of the class. For example, if you have a Customers table in your database, the class will be called CustomersRecord. The record class is different from the record control class described elsewhere. A record class corresponds to a database record, while a record control class corresponds to a user interface control that contains other fields that display or edit data.

The Table class is one of the most important classes used in Iron Speed Designer applications. This class is generated for each table in your application to provide the methods necessary to retrieve a group of records based on a query. A “Table” suffix is added to the name of the table to get the name of the class. For example, if you have a Customers table in your database, the class will be called CustomersTable. A “View” or a “Query” suffix is added to the name if the class is generated for a view or query respectively.
When querying a database, instead of formulating the entire SELECT, DELETE or UPDATE SQL statement, you can use methods defined on the Table class. You also do not need to know the differences in SQL syntax between the various database products such as Microsoft SQL Server and Oracle. If you are using Stored Procedures, the methods on the Table class will automatically call the appropriate stored procedures.
To read data from the database you can use the GetRecords function on the Table class. There are a number of variations of the GetRecords functions that either take a string based where clause or an object that specifies the clause. Each of the GetRecords functions can take optional arguments that specify the order by clause, the number of records to retrieve, and the starting page number.
GetRecord

There are four variations of the GetRecord function. Two of the GetRecord functions take a primary key Id specified as a string or a key value pair for composite keys. These functions must be used to retrieve records when updating data. The other GetRecord functions use a where string.
If there are multiple records that possibly can be returned based on the where clause specified, only the first record is returned since GetRecord can only return one record. The actual record returned in case of multiple matching records is based on the order by clause and by the database product being used and there is no guarantee that a specific record will be returned first.
GetRecord(where As String) As {Record}

GetRecord(where As String, orderBy As BaseClasses.Data.OrderBy) As {Record}

GetRecord(id As String, bMutable As Boolean) As {Record}

GetRecord(id As BaseClasses.Data.KeyValue, bMutable As Boolean) As {Record}

GetRecord(where As String) As {Record}
This version of GetRecord takes a where clause as a string. Multiple where clauses can be combined and string values used in comparison must be enclosed in quotes and follow the specific rules of the SQL syntax specified by the database product being used.
C#:

GetRecord(“CustomerId = ‘ALFKI’”);
GetRecord(“CustomerId like ‘AL%’”);
GetRecord(“CustomerId like ‘AL%’ and ContactName like ‘%joe%’”) ;
VB.NET:
GetRecord(“CustomerId = ‘ALFKI’”)

GetRecord(“CustomerId like ‘AL%’”)

GetRecord(“CustomerId like ‘AL%’ and ContactName like ‘%joe%’”)

GetRecord(where As String, orderBy As BaseClasses.Data.OrderBy) As {Record}

This version of GetRecord takes a where clause as a string and an order by clause. Multiple where clauses can be combined and string values used in comparison must be enclosed in quotes and follow the specific rules of the SQL syntax specified by the database product being used.

C#:

OrderBy ob = new OrderBy(true, true);

// Order by Name in Ascending order

ob.Add(CustomersTable.ContactName, Asc);

recs = CustomersTable.GetRecords(wc, orderBy, 3, 50);

GetRecord(“CustomerId = ‘ALFKI’”, ob);
GetRecord(“CustomerId like ‘AL%’” , ob);
GetRecord(“CustomerId like ‘AL%’ and ContactName like ‘%joe%’” , ob) ;
VB.NET
Dim ob As OrderBy = New OrderBy(True, True)

‘ Order by Name in Ascending order

ob.Add(CustomersTable.ContactName, Asc)

recs = CustomersTable.GetRecords(wc, orderBy, 3, 50)
GetRecord(“CustomerId = ‘ALFKI’”, ob)

GetRecord(“CustomerId like ‘AL%’” , ob)

GetRecord(“CustomerId like ‘AL%’ and ContactName like ‘%joe%’” , ob)

GetRecord(id As String, bMutable As Boolean) As {Record}

GetRecord(id As BaseClasses.Data.KeyValue, bMutable As Boolean) As {Record}

GetRecords:

GetRecords(where As String) As {Record}()

GetRecords(where As String, orderBy As BaseClasses.Data.OrderBy) As {Record}()

GetRecords(where As String, orderBy As BaseClasses.Data.OrderBy, pageIndex As Integer, pageSize As Integer) As {Record}()

GetRecords(whereClause As BaseClasses.Data.WhereClause, orderBy As BaseClasses.Data.OrderBy, pageIndex As Integer, pageSize As Integer) As {Record}()

GetRecords(where As String) As {Record}()

GetRecords(where As String, orderBy As BaseClasses.Data.OrderBy) As {Record}()

GetRecords(where As String, orderBy As BaseClasses.Data.OrderBy, pageIndex As Integer, pageSize As Integer) As {Record}()

GetRecords(whereClause As BaseClasses.Data.WhereClause, orderBy As BaseClasses.Data.OrderBy, pageIndex As Integer, pageSize As Integer) As {Record}()

GetRecords with a where clause string

The following examples show how to use the GetRecords functions with a string based where clause. This case is typically used to make a call to GetRecords when there is only one where clause that is not combined with another clause using an AND or OR operator. While the clauses can be combined in a string, it is better to use a WhereClause object defined later in this section.

C#:

CustomersRecord[] myRecords;

myRecords = CustomersTable.GetRecords("Country = USA");

if (myRecords != null)

{

 foreach (CustomersRecord rec in myRecords)

 {

 // To access a field in the record, simply specify
 // rec.<FieldName>
 String s = "Company: " + rec.CompanyName;

 }

}

Visual Basic .NET:

Dim myRecords As CustomersRecord()

myRecords = CustomersTable.GetRecords("Country = USA")

If Not (IsNothing(myRecords)) Then
 For Each rec In myRecords

 ' To access a field in the record, simply specify
 ' rec.<FieldName>
 Dim s As String = "Company: " & rec.CompanyName

 Next
End If
The GetRecords function takes a WHERE clause and retrieves all records that meet that criteria. Please note that the number of records returned is dependent on the number of records in the database. If you want to limit the number of records, you can pass additional parameters to the GetRecords function. The following code will return the third set of 50 records.

C#:

CustomersRecord[] myRecords;

myRecords = CustomersTable.GetRecords("Country = ‘USA’", null, 3, 50);

if (myRecords != null)

{

 foreach (CustomersRecord rec in myRecords)

 {

 // To access a field in the record, simply specify
 // rec.<FieldName>
 String s = "Company: " + rec.CompanyName;

 }

}

Visual Basic .NET:

Dim myRecords As CustomersRecord()

myRecords = CustomersTable.GetRecords("Country = ‘USA’", Nothing, 3, 50)

If Not (IsNothing(myRecords)) Then
 For Each rec In myRecords

 ' To access a field in the record, simply specify
 ' rec.<FieldName>
 Dim s As String = "Company: " & rec.CompanyName

 Next
End If
The above examples demonstrate how you can read a set of records from the database. If you want to access the records that are being displayed on a page, you would need to call the GetRecords() function on the Table Control class within the page.
You can also add more complex where clause by combing AND or OR operators within the string such as:

C#:

myRecords = CustomersTable.GetRecords("Country = ‘USA’ and ContactName = ‘Fred’", null, 3, 50);

myRecords = CustomersTable.GetRecords("Country = ‘USA’ or ContactName = ‘Fred’", null, 3, 50);

myRecords = CustomersTable.GetRecords("Country = ‘USA’ and (ContactName LIKE ‘Fred%’ or ContactName LIKE ‘Jim%’)", null, 3, 50);

Visual Basic .NET:

myRecords = CustomersTable.GetRecords("Country = ‘USA’ and ContactName = ‘Fred’", Nothing, 3, 50)
myRecords = CustomersTable.GetRecords("Country = ‘USA’ or ContactName = ‘Fred’", Nothing, 3, 50)
myRecords = CustomersTable.GetRecords("Country = ‘USA’ (ContactName LIKE ‘Fred%’ or ContactName LIKE ‘Jim%’)", Nothing, 3, 50)
In addition to the above example, you can also use the GetRecord function to read a single record from the database. GetRecord takes a WHERE clause similar to GetRecords and will return the first record that matches the query.

GetRecords with a WhereClause object

The following examples show how to use the GetRecords functions with a WhereClause object. This case is typically used to make a call to GetRecords when there are more than one where clauses that must be combined with AND or OR operators. The CreateWhereClause method generated by Iron Speed Designer uses this method to retrieve data from the database.

You can defined a WhereClause object and then call the iAND and iOR methods to define clauses. The iAND and iOR methods take a field name, an operator and a value. The field name may contain spaces or other characters, so it is safer to use the name as provided by the database schema. The database schema field name can be specified using the Table class followed by the column name such as CustomersTable.CompanyName.

C#:

 try

 {

 DbUtils.StartTransaction();

 // Start with a blank WhereClause
 WhereClause wc = new WhereClause();

 // Create a WhereClause that is as follows:
 // Country = "USA" AND State = "California" AND (Name Contains "Jones" OR CompanyName Contains "Jones")
 wc.iAND(CustomersTable.Country, EqualsTo, “USA”);

 wc.iAND(CustomersTable.State, EqualsTo, “California”);

 // Create separate OR where clause (Name Contains "Jones" OR CompanyName Contains "Jones")
 WhereClause wc2 = new WhereClause();

 wc2.iOR(CustomersTable.ContactName, Contains, “Jones”);

 wc2.iOR(CustomersTable.CompanyName, Contains, “Jones”);

 // Add the newly created OR clause to the original where clause with an AND

 wc.iAND(wc2);

 CustomersRecord[] recs;
 recs = CustomersTable.GetRecords(wc);

 }

 catch (Exception ex)

 {

 throw ex;

 }

 finally

 {

 DbUtils.EndTransaction();

 }

Visual Basic .NET:

 Try

 DbUtils.StartTransaction()

 ' Start with a blank WhereClause
 Dim wc As WhereClause = New WhereClause()

 ' Create a WhereClause that is as follows:
 ' Country = "USA" AND State = "California" AND (ContactName Contains "Jones" OR CompanyName Contains "Jones")
 wc.iAND(CustomersTable.Country, EqualsTo, “USA”)

 wc.iAND(CustomersTable.State, EqualsTo, “California”)
 ' Create separate OR where clause (Name Contains "Jones" OR CompanyName Contains "Jones")
 WhereClause wc2 = New WhereClause()
 wc2.iOR(CustomersTable.ContactName, Contains, “Jones”)

 wc2.iOR(CustomersTable.CompanyName, Contains, “Jones”)
 ' Add the newly created OR clause to the original where clause with an AND

 wc.iAND(wc2)
 Dim recs() As CustomersRecord
 recs = CustomersTable.GetRecords(wc)
 Catch ex As Exception

 Throw ex

 Finally
 DbUtils.EndTransaction()

 End Try
The GetRecords function takes a WHERE clause and retrieves all records that meet that criteria. Please note that the number of records returned is dependent on the number of records in the database. If you want to limit the number of records, you can pass additional parameters to the GetRecords function. The following code will order the set of records by Contact Name and return the third set of 50 records.

C#:

this.DataSource = CustomersTable.GetRecords(wc, null, 3, 50);

Visual Basic .NET:

Me.DataSource = CustomersTable.GetRecords(wc, Nothing, 3, 50)

Order By clause
The GetRecords function can also accept an Order By clause. In the example below, the GetRecords function is called with an order by clause to retrieve the records ordered by the ContactName in Ascending order.
C#:

// By default we want to expand foreign keys and to sort in a case sensitive order

OrderBy orderBy = new OrderBy(true, true);

// Order by Name in Ascending order

orderBy.Add(CustomersTable.ContactName, Asc);

recs = CustomersTable.GetRecords(wc, orderBy, 3, 50);

Visual Basic .NET:

' By default we want to expand foreign keys and to sort in a case sensitive order

Dim orderBy As orderBy = New orderBy(True, True)

' Order by Name in Ascending order

orderBy.Add(CustomersTable.ContactName, Asc)

recs = CustomersTable.GetRecords(wc, orderBy, 3, 50)

The order by clause constructor takes two parameters that determine whether the foreign key value should be expanded before comparison and whether the value should be considered case sensitive or insensitive.

If the sort field is a foreign key field, the Expand Foreign Key parameter allows you to either sort by the numeric order of the field or by the text value represented as the Display Foreign Key As (DFKA). For example, say the Orders table has a Customer Id, and there are three customers in the database with Id 1, Name Zack, Id 2, Name Sam, and Id 3, Name Anderson. In this case, passing True to the Expand Foreign Key parameter would sort the returned values by alphabetical order (Anderson [Id 3], Sam [Id 2], Zack [Id 1]) of the Name field of the Customer record. If the Expand Foreign Key parameter is passed as False, the values will be sorted by numeric order of the key (Zack [Id 1], Sam [Id 2], Anderson [Id 3]).

The above examples demonstrate how you can read a set of records from the database. If you want to access the records that are being displayed on a page, you would need to call the GetRecords() function on the Table Control class within the page.

In addition to the above example, you can also use the GetRecord function to read a single record from the database. GetRecord takes a WHERE clause similar to GetRecords and will return the first record that matches the query.

Transaction Handling
All calls to the database must be surrounded by a transaction boundary. Sometimes the transaction boundary may already be specified for you if you are within one of the functions generated by Iron Speed Designer including LoadData, DataBind, SaveData, and any of the button click handlers. In other cases, you will need to add your own transaction boundary around the calls to GetRecord and GetRecords as shown below. The calls to CommitTransaction and RollbackTransaction are only necessary if data is being saved into the database.
C#:

 try

 {

 DbUtils.StartTransaction();

 CustomersRecord rec;

 rec = new CustomersRecord();

 rec.CompanyName = “Iron Speed, Inc.”;

 rec.Save();

 DbUtils.CommitTransaction();

 }

 catch (Exception ex)

 {

 DbUtils.RollBackTransaction();

 throw ex;

 }

 finally

 {

 DbUtils.EndTransaction();

 }

Visual Basic .NET:

 Try

 DbUtils.StartTransaction()

 Dim rec As CustomersRecord
 rec = New CustomersRecord()

 rec.CompanyName = “Iron Speed, Inc.”

 rec.Save()

 DbUtils.CommitTransaction()
 Catch ex As Exception

 DbUtils.RollBackTransaction()
 Throw ex

 Finally
 DbUtils.EndTransaction()

 End Try
Updating Data
When you read data using GetRecord or GetRecords using a where clause or where string, the returned records are not updatable by default. These records cannot be modified and saved to the database. To update data, you must call the GetRecord function with an Id, and pass True for the bMutable parameter.

The following code reads all of the records where the Country is set to “USA” and changes the Country to “United States of America”. Note the call to GetRecord to retrieve an updateable record where the second parameter is passed as True to get a record that can be saved.
C#:

 try

 {

 DbUtils.StartTransaction();

 // Start with a blank WhereClause
 WhereClause wc = new WhereClause();

 // Create a WhereClause that is as follows:
 // Country = "USA"
 wc.iAND(CustomersTable.Country, EqualsTo, “USA”);

 CustomersRecord[] recs;
 recs = CustomersTable.GetRecords(wc);

 CustomersRecord rec;

 foreach (var rec in recs) {

 CustomersRecord updateableRec = default(CustomersRecord);

 updateableRec = CustomersTable.GetRecord(rec.CustomerID, true);

 if (updateableRec != null) {

 updateableRec.Country = "United States of America";

 updateableRec.Save();

 }

 }
 DbUtils.CommitTransaction();

 }

 catch (Exception ex)

 {

 DbUtils.RollBackTransaction();

 throw ex;

 }

 finally

 {

 DbUtils.EndTransaction();

 }

Visual Basic .NET:

 Try

 DbUtils.StartTransaction()

 ' Start with a blank WhereClause
 Dim wc As WhereClause = New WhereClause()

 ' Create a WhereClause that is as follows:
 ' Country = "USA"
 wc.iAND(CustomersTable.Country, EqualsTo, “USA”)

 Dim recs() As CustomersRecord
 recs = CustomersTable.GetRecords(wc)
 Dim rec As CustomersRecord

 For Each rec in recs

 Dim updateableRec As CustomersRecord

 updateableRec = CustomersTable.GetRecord(rec.CustomerId, True)

 If Not(IsNothing(updateableRec)) Then

 updateableRec.Country = “United States of America”

 updateableRec.Save()

 End If

 Next
 DbUtils.CommitTransaction()
 Catch ex As Exception

 DbUtils.RollBackTransaction()
 Throw ex

 Finally
 DbUtils.EndTransaction()

 End Try
